Ribosomal protein S6 (S6rp) is phosphorylated by the p70S6K enzyme in mammals, under mitogen/IGF regulation. This event has been correlated with an increase in 5'TOP mRNA translation. In this research, a maize S6 kinase (ZmS6K) was isolated from maize (Zea mays L.) embryonic axes by human p70S6K antibody immunoprecipitation. This enzyme, a 62 kDa peptide, proved to be specific for S6rp phosphorylation, as revealed by in vivo and in vitro kinase activity using either the 40S ribosomal subunit or the RSK synthetic peptide as the substrates. ZmS6K activation was achieved by phosphorylation on serine/threonine residues. Specific phospho-Threo recognition by the p70S6K antibody directed to target phospho-Threo residue 389 correlated with ZmS6K activation. The ZmS6K protein content remained almost steady during maize seed germination, whereas the ZmS6K activity increased during this process, consistent with Zm6SK phosphorylation. Addition of insulin to germinating maize axes proved to increase ZmS6K activity and the extent of S6rp phosphorylation. These events were blocked by rapamycin, an inhibitor of the insulin signal transduction pathway in mammals, at the TOR (target of rapamycin) enzyme level. We conclude that ZmS6K is a kinase, structurally and functionally ortholog of the mammalian p70S6K, responsible for in vivo S6rp phosphorylation in maize. Its activation is induced by insulin in a TOR-dependent manner by phosphorylation on conserved serine/threonine residues.