Insulin is a potent adipogenic hormone that triggers an induction of a series of transcription factors governing differentiation of pre-adipocytes into mature adipocytes. However, the exact link between the insulin signaling cascade and the intrinsic cascade of adipogenesis remains incompletely understood. Herein we demonstrate that inhibition of prenylation of p21 ras and Rho-A arrests insulin-stimulated adipogenesis. Inhibition of farnesylation of p21 ras also blocked the ability of insulin to activate mitogen-activated protein (MAP) kinase and cyclic AMP response element-binding (CREB) protein. Expression of two structurally different inducible constitutively active CREB constructs rescued insulin-stimulated adipocyte differentiation from the inhibitory influence of prenylation inhibitors. Constitutively active CREB constructs induced expression of PPAR␥2, fatty acid synthase, GLUT-4, and leptin both in control and prenylation inhibitors-treated cells. It appears that insulin-stimulated prenylation of the Ras family GTPases assures normal phosphorylation and activation of CREB that, in turn, triggers the intrinsic cascade of adipogenesis.