Single metal atom strands have attracted significant interest because of their unique properties, such as quantization effects and a high degree of strength. Recently it was suggested that the strength of a gold atom strand can be enhanced by the insertion of an impurity atom, but it has not been experimentally investigated. Using a transmission electron microscope under ultrahigh vacuum conditions, we observed that gold atoms were pulled out one by one from a carbon-contaminated gold (111) surface to form a long atom strand. The strand was so strong that it did not break even upon bending. Supported by first-principles calculations, the strand was found to have two carbon atoms at each gold atom interval. Our observations suggest that the carbon atoms act as a glue to form a long gold atom strand.