2021
DOI: 10.2298/pim200205001p
|View full text |Cite
|
Sign up to set email alerts
|

Integer points enumerator of hypergraphic polytopes

Abstract: For a hypergraphic polytope there is a weighted quasisymmetric function which enumerates positive integer points in its normal fan and determines its f-polynomial. This quasisymmetric function invariant of hypergraphs extends the Stanley chromatic symmetric function of simple graphs. We consider a certain combinatorial Hopf algebra of hypergraphs and show that universal morphism to quasisymmetric functions coincides with this enumerator function. We calculate the f-polynomial of uniform hyper… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 9 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?