2010
DOI: 10.1142/s0217984910022755
|View full text |Cite
|
Sign up to set email alerts
|

Integrable Coupling Systems of Hamiltonian Lattice Equations by Semi-Direct Sums of Lie Algebras

Abstract: By considering a discrete isospectral eigenvalue problem, a hierarchy of lattice soliton equations are derived. The relation to the Toda type lattice is achieved by variable transformation. With the help of Tu scheme, the Hamiltonian structure of the resulting lattice hierarchy is constructed. The Liouville integrability is then demonstrated. Semi-direct sum of Lie algebras is proposed to construct discrete integrable couplings. As applications, two kinds of discrete integrable couplings of the resulting syste… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?