In the process of constructing roads for the development of the city, cut-slopes are made by excavating mountains. However, these cut-slopes are degraded in strength by time-deterioration phenomenon, and progressive slope failure is caused. This study developed an integrated analysis method for stability analysis and maintenance of cut-slopes in urban. The slope stability analysis was performed using the finite element model, and the progressive slope failure by time-dependent deterioration was quantified by using the strength parameters of soil applying the strength reduction factor (SRF). The displacements until the slope failure by slope stability analysis were quantified by cumulative displacement curve, velocity curve, and inverse velocity curve and, applied to the slope maintenance method. The inverse-velocity curve applied to the prediction of the time of slope failure was regressed to the 1st linear equation in the brittle material and the 3rd polynomial equation in the ductile material. This is consistent with the proposed formula of Fukuzono and also shows similar behavior to the failure case in literature. In the future, integrated analysis method should be improved through additional research. And it should be applied to cut-slope to prevent disasters.