Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Plane contact problems of the elasticity theory are investigated for a wedge when Poisson’s ratio is an arbitrary smooth function with respect to the angular coordinate while shear modulus is constant. For this case Young’s modulus is also variable with respect to the angular coordinate. A finite contact domain is given on one wedge face, it does not include the wedge apex, while the other wedge face is rigidly fixed (problem A) or stress-free (problem B). To reduce the problems to integral equations with respect to the contact pressure, we use the general Freiberger type representation for the solution of elastic equilibrium equations written in polar coordinates with variable Poisson’s ratio. Exact solutions of auxiliary problems are constructed with the help of Mellin integral transforms. The regular asymptotic method employed is effective for contact domains relatively distant from the wedge apex. It is shown that logarithmic terms appear in the asymptotic solutions for the inhomogeneous material which are missing in the well-known asymptotics for the homogeneous one. In contact problem C which is corresponding to problem A, the friction and roughness are taken into account in the contact region. The roughness of the wedge surface is simulated by a Winkler type coating. The collocation method is used for solving integral equations of the second kind. Unlike problem A, in problem C the contact pressure does not have square root singularities at end-points where it takes finite values. Calculations are made for the cases when Poisson’s ratio and Young’s modulus increase or decrease from the surface of the wedge.
Plane contact problems of the elasticity theory are investigated for a wedge when Poisson’s ratio is an arbitrary smooth function with respect to the angular coordinate while shear modulus is constant. For this case Young’s modulus is also variable with respect to the angular coordinate. A finite contact domain is given on one wedge face, it does not include the wedge apex, while the other wedge face is rigidly fixed (problem A) or stress-free (problem B). To reduce the problems to integral equations with respect to the contact pressure, we use the general Freiberger type representation for the solution of elastic equilibrium equations written in polar coordinates with variable Poisson’s ratio. Exact solutions of auxiliary problems are constructed with the help of Mellin integral transforms. The regular asymptotic method employed is effective for contact domains relatively distant from the wedge apex. It is shown that logarithmic terms appear in the asymptotic solutions for the inhomogeneous material which are missing in the well-known asymptotics for the homogeneous one. In contact problem C which is corresponding to problem A, the friction and roughness are taken into account in the contact region. The roughness of the wedge surface is simulated by a Winkler type coating. The collocation method is used for solving integral equations of the second kind. Unlike problem A, in problem C the contact pressure does not have square root singularities at end-points where it takes finite values. Calculations are made for the cases when Poisson’s ratio and Young’s modulus increase or decrease from the surface of the wedge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.