2019
DOI: 10.29207/resti.v3i3.1119
|View full text |Cite
|
Sign up to set email alerts
|

Integrasi N-gram, Information Gain, Particle Swarm Optimation di Naïve Bayes untuk Optimasi Sentimen Google Classroom

Abstract: The use of Learning Management System (LMS) applications made by Google with name Google Classroom since 2015 in junior and senior high schools in Bekasi City helps the learning process become easier. However, its use can have positive and negative effects on students. Google Class Sentiment by integrating N-grams, Information Gain, Particle Swarm Optimization, and Naïve Bayes Classifiers that have never been done by researchers before. From the experiments carried out, N-gram can increase the accuracy of 6.7%… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
9

Year Published

2020
2020
2021
2021

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 12 publications
(13 citation statements)
references
References 9 publications
0
4
0
9
Order By: Relevance
“…Then the research conducted by (Dewi et al, 2020) stated that google classroom can improve students' scores in reading comprehension. Another study was also conducted by (Pramono et al, 2019) which stated that the use of N-gram in improving the optimization of sentiment results in google classroom can increase accuracy by 6.7 and AUC by 4% compared to not using N-gram. The purpose of this study is to describe the implementation of based e-learning-ICT learning using the Google Classroom application during the Covid-19 pandemic in public high schools.…”
Section: Introductionmentioning
confidence: 99%
“…Then the research conducted by (Dewi et al, 2020) stated that google classroom can improve students' scores in reading comprehension. Another study was also conducted by (Pramono et al, 2019) which stated that the use of N-gram in improving the optimization of sentiment results in google classroom can increase accuracy by 6.7 and AUC by 4% compared to not using N-gram. The purpose of this study is to describe the implementation of based e-learning-ICT learning using the Google Classroom application during the Covid-19 pandemic in public high schools.…”
Section: Introductionmentioning
confidence: 99%
“…Salah satu cara untuk dapat mengoptimasikan performa kedua algoritma tersebut dapat dilakukan dengan Particle Swarm Optimization (PSO) .Sebagai alat pemilihan fitur, dengan partikel PSO akan mampu memberikan sebuah kombinasi fitur sebuah ruang masalah [11]. Penelitian mengenai klasifikasi Google Clasroom yang mengintegrasikan beberapa algoritma untuk mengoptimasi algoritma Naive Bayes menghasilkansebuah kesimpulan bahwa penggunaan algoritma PSO pada Naive Bayes mampu meningkatkan akurasi sampai dengan 10% [12]. Selanjutnya penelitian tentang penerapan PSO pada algoritma Naive Bayes pada analisis sentinmen review hotel.…”
Section: Pendahuluanunclassified
“…Penambahan proses n-gram ini telah dilakukan oleh beberapa penelitian yang menghasilkan penambahan nilai akurasi. Pada penelitian yang dilakukan oleh Indrayuni & Wahyudin [7] mendapatkan peningkatan akurasi 2%, sedangkan pada penelitian yang dilakukan oleh Pramono hasil akurasinya meningkat 6,7% [8].…”
Section: Pendahuluanunclassified