This paper presents a multiobjective evolutionary approach that can solve integrated airline scheduling and rescheduling problems under conditions of disruption. The integrated problem simultaneously considers both aircraft routing and crew pairing to meet several objectives under real-world constraints and disturbance events. Because of their high complexity, we formulated integrated problems as combinational optimization problems and used the NSGA-II variant method combined with a repair strategy as the solver. To verify and validate the proposed approach, real-world flight data were used to build study cases. In the experiment, we first studied the convergence of the algorithm by using the repair method. We then reviewed real-world plans and evaluated the improvement obtained using the proposed integrated approach. Finally, a disruption was simulated to study rescheduling capability. Experimental results showed that the proposed approach yields better schedules than real-world expert-made plans and that Pareto solutions after the disruption can, under safety and legal constraints, be successfully explored in rescheduling problems. INDEX TERMS Airline rescheduling, aircraft routing, crew pairing, integrated airline scheduling, multiobjective optimization.