Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.