The COVID-19 pandemic encouraged the use of plastic-based personal protective equipment (PPE), which aided greatly in its management. However, the increased production and usage of these PPEs put a strain on the environment, especially in developing and underdeveloped countries. This has led various researchers to study low-cost and effective technologies for the recycling of these materials. One such material is disposable facemasks. However, previous studies have only been able to engage electrically powered reactors for their thermochemical conversion, which is a challenge as these reactors cannot be used in regions with an insufficient supply of electricity. In this study, the authors utilized a biomass-powered reactor for the conversion of waste disposable facemasks and almond leaves into hybrid biochar. The reactor, which is relatively cheap, simple to use, environmentally friendly, and modified for biochar production, is biomass-powered. The co-carbonization process, which lasted 100 min, produced a 46% biochar yield, which is higher than previously obtained biochar yields by other researchers. The biochar thus obtained was characterized to determine its properties. FTIR analysis showed that the biochar contained functional groups such as alkenes, alkynes, hydroxyls, amines, and carbonyls. The EDX analysis revealed that the biochar was primarily made of carbon, tellurium, oxygen, and calcium in the ratios of 57%, 19%, 9%, and 7%, respectively. The inclusion of the facemask decreased the surface area and porosity of the biochar material, as evidenced by its surface area and pore characteristics.