2022
DOI: 10.1155/2022/5659979
|View full text |Cite
|
Sign up to set email alerts
|

Integrated Classification Algorithm for Unbalanced Data Streams Based on Joint Nonnegative Matrix Factorization

Abstract: The purpose of this paper is to study the unbalanced data flow integration classification algorithm based on joint nonnegative matrix factorization, in order to solve the problem that the basic clustering results obtained from the original data set have some information loss, thereby reducing the effective information in the integration stage. In this paper, the accuracy of the unbalanced data and the detection time consumption are selected as the research object. Six data sets with imbalanced proportions of m… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?