Several estuaries along the Pacific Ocean coast of North America were identified recently as having elevated 4-nonylphenol (4-NP) in sediments and biota, raising concerns about reproductive impacts for wildlife given 4-NP's established estrogenic activity as an endocrine-disrupting compound. Here we characterize 4-NP mediated induction and recovery of estrogen-sensitive gene transcripts in the arrow goby (Clevelandia ios), an intertidal fish abundant in estuarine mud flats on the west coast of North America. Male gobies were exposed to waterborne 4-NP at 10 μg/L or 100 μg/L for 20 days followed by a 20 day depuration period. Additional males were treated with 17β-estradiol (E2; 50 ng/L). 4-NP at 100 μg/L elevated hepatic mRNAs encoding vitellogenins A (vtgA) and C (vtgC) and choriogenin L (chgL) within 72 h, and choriogenin H minor (chgHm) within 12 days. Hepatic mRNAs encoding estrogen receptor alpha (esr1) were also elevated after 12 days of 4-NP exposure, but returned to pre-exposure levels at 20 days even under continuing 4-NP treatment. 4-NP did not alter mRNA levels of estrogen receptor gamma (esr2a) in the liver, or of esr1, esr2a, and cytochrome P450 aromatase B (cyp19a1b) in the brain. The temporal pattern of initial induction for hepatic vtgA, vtgC, and chgL transcripts by 4-NP mirrored the pattern by E2, while chgHm and esr1 mRNA induction by 4-NP lagged 2-11 days behind the responses of these transcripts to E2. These findings establish 4-NP concentration- and time-dependent induction patterns of choriogenin and vitellogenin transcription following exposure to environmentally relevant 4-NP concentrations, while concurrently demonstrating tissue-specific induction patterns for esr1 by estrogenic compounds. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 1513-1529, 2017.