Network reconfiguration is a process to change the open-switches in distribution system for a minimum power loss. In the past, metaheuristic techniques were applied widely for network reconfiguration with consideration of a fixed loading profile. When the loading changes, the current configuration may not be the optimal one. Thus, the technique needs to be executed to find a new optimal configuration based on the latest loading. The process is time-consuming since metaheuristic techniques commonly require high computational times and produces inconsistent results. Therefore, this paper proposes a network reconfiguration technique based on artificial neural network (ANN) for variable loading conditions. The proposed ANN model is tested on IEEE 33-bus, IEEE 69-bus, and IEEE-118 bus systems. The test results indicate the efficiency of the proposed technique in three aspects: processing time, simple structure, and high accuracy.