Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/) eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.
TakedownIf you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. Abstract: The effect of greenery on traffic noise mitigation has been extensively studied on the level of single plants, green walls, berms and hedges, but not considering whole sample areas within the cities. Therefore, the aim of this paper is to investigate the relationship between features of urban morphology related to green spaces, roads or buildings and traffic noise distribution in urban areas. The analysis was applied in eight UK cities with different historical and architectural background, following two different settlement forms (radial, linear). In each city a 30 km 2 grid was defined and three different levels of approach were considered (macro-scale, meso-scale, micro-scale). The first level regarded the eight cities as single entities, while in the second one every single tile of the applied grid was investigated in two different cities. In the third level only the eight city centres were analyzed. Statistical analysis was used combined with GIS tools. In total 18 variables were constructed and tested for possible relationships with noise levels (L den ). It was found that in spite of the fact that each city has its own dynamic and form, features of urban morphology were related to traffic noise levels to a different extent at each scale. At the macro-scale, the green space pattern was related to the structure of the city as well as the traffic noise levels in combination with the rest of the morphological parameters. At the meso-scale, an increase in internal road connectivity contributed to higher traffic noise. Green space variables explained part of the variance in traffic prediction models. Finally, at the micro-scale, it was also proved that different areas can have the same building coverage but different noise levels. Therefore, these indexes could be profiled and used as an "a priori" tool for urban sound planning.