The thesis presents research carried out in the field of design for microassembly (DFIlA), a field that has hereto been characterised by the absence of well defined methodologies intended to facilitate transfer of prototypes from the research lab to production on industrial scale. A DFIlA methodology has been developed, serving the purpose of integrating product and micro assembly process development. It aims in particular at increasing the efficiency of the microproduct development process, decreasing the development time and the product and process cost, and enhancing the product quality.Chapter 1 presents the motivations, objectives, and structure of the thesis. The work carried out is inspired by the need to overcome barriers currently existing between the making of single research products and production on an industrial level. The main objective is to contribute to the creating of a novel DFIlA that supports product design and process selection, thereby facilitating the efficient assembly of complex three-dimensional miniaturised devices. This is complemented by a range of secondary targets that deal with the development and verification of supporting methods and models related to DFIlA.The summary of a comprehensive literature review is given in chapter 2. The survey provides results of studies closely related to the work reported in this thesis and relates that work to a larger ongoing dialogue about the topic of assembly and design in the microworld.