Rapid industrialization and urbanization have caused frequent haze pollution episodes during winter in eastern China. Considering that the vertical profile of the aerosol properties changes significantly with altitude, investigating aerosol aloft information via satellite remote sensing is essential for studying regional transport, climate radiative effects, and air quality. Through a synergic approach between lidar, the AErosol RObotic NETwork sunphotometer observations, and WRF-Chem simulations, several transboundary aloft transport events of haze aerosols to Xuzhou, eastern China, are investigated in terms of source, type, and composition and the impact on optical properties. Upper-air aerosol layers are short-lived tiny particles that increase the total aerosol optical depth (AOD). The aloft aerosols not only play a critical role during the haze event, enhancing the scattering of aerosol particles significantly but also cause a rise in the AOD and the Ångström exponent (AE), which increases the proportion of fine particles, exacerbating the pollution level near the surface. Based on the model simulation results, our study highlights that the transported aloft aerosols lead to the rapid formation of secondary inorganic substances, such as secondary sulfates, nitrates, and ammonium salts, which strongly contribute to haze event formation. Moreover, the results provide evidence that the haze frequency events associated with polluted dust outbreaks were higher for 2014–2015 winter. A closer analysis shows that the advected dust layers over Xuzhou originated from Inner Mongolia and the Xinjiang Uygur Autonomous Region. The study of the occurrence frequency, height, thickness, and optical properties of aloft anthropogenic haze in China will further deepen our understanding and provide a strong basis to assess aerosol impact on transport and the Earth–atmosphere radiative balance.