Microbridge resonators have been widely used as sensing elements to measure various parameters, such as pressure, acceleration, biochemical adsorption and reactions, mass-flow, infrared ray et al. But no model has been built to calculate quantitatively the shift of resonance frequency due to heat convection, incident infrared ray, excited thermal power drift and ambient air pressure. In this paper, a theoretical analysis is given to calculate the resonance frequency shift due to the thermal power (static heating power and dynamic heating power) fluctuation and the added mass of the ambient air. The model can be used to design resonant sensors based on microbridge resonator, such as resonant mass-flow sensors, resonant IR detectors, resonant biochemical sensors and resonant vacuum gauge, et al.