Efforts to reliably measure AFM lateral forces have been impeded by the difficulties in obtaining appropriate calibration standards, applying those force standards to the apex of the tip, and quantifying calibration uncertainty. Here we propose a new method, Traceable Lateral Force Calibration (TLFC), which combines the reliability of direct methods with the convenience of indirect/semi-direct methods. Like other direct methods, ours comprise three essential steps: (1) fabrication of a spring (the Traceable Reference Lever or TRL); (2) calibration of the TRL spring constant; (3) conversion of measurable TRL deflections into absolute lateral force measurements based on its pre-calibrated spring constant (TLFC method). The TRL device, a simple two-axis cantilever, is easy to design, fabricate, and directly pre-calibrate with a standard laboratory microbalance. Following pre-calibration, the TRL device becomes a convenient absolute standard for AFM lateral force measurements. This paper describes the complete method and demonstrates its primary merits, which include (1) traceability to measurement standards; (2) ease of use by outside user groups; (3) absolute measurement errors < 10% for moderately stiff cantilevers (> 1 N/m normal stiffness); (4) robustness over a wide range of common loads, instruments, probes, and environments. While the method and proof-of-concept devices described in this paper were designed primarily for moderate to high load cantilevers (> 1 N/m), we discuss how a next generation of compliant TRL devices can be used with the TLFC method to reliably calibrate arbitrary AFM cantilevers (< < 1 N/m) and forces. Arnab Bhattacharjee and Nikolay T. Garabedian Co lead authors.