It is popular that correlated seismic failures spread over the fault tree of a seismic probabilistic safety assessment (PSA) for a nuclear power plant (NPP). To avoid the calculational difficulty of core damage frequency (CDF), the fault tree has been simplified by replacing correlated seismic failures with one typical seismic failure by assuming a full correlation among the correlated seismic failures. Then, the approximate seismic CDF of a seismic single-unit PSA (SUPSA) has been calculated for decades with this simplified SUPSA fault tree. Furthermore, current seismic multi-unit PSAs (MUPSAs) have been performed with imperfect seismic MUPSA models that were generated by combining such imperfect seismic SUPSA fault trees. The authors of this study recently developed a method that can calculate an accurate seismic CDF by converting correlated seismic failures into seismic common cause failures (CCFs). In this study, accurate and imperfect MUPSA models were created and their seismic CDFs were compared. The results of this study show that the seismic CDFs in SUPSA and MUPSA are drastically distorted and safety margins are accordingly distorted when the full correlation assumption is employed. Thus, this study shows that very careful attention should be paid to calculating and interpreting seismic CDFs for the single-unit and multi-unit NPP regulations.