Human Immunodeficiency virus (HIV) infection is regulated by a wide array of host cell factors that combine to influence viral transcription and latency. To understand the complex relationship between the host cell and HIV latency, we performed a lentiviral CRISPR screen that targeted a set of host cell genes whose expression or activity correlates with HIV expression. We further investigated one of the identified factors - the transcription factor ETS1 and found that it is required for maintenance of HIV latency in a primary CD4 T cell model. Interestingly, ETS1 played divergent roles in actively infected and latently infected CD4 T cells, with knockout of ETS1 leading to reduced HIV expression in actively infected cells, but increased HIV expression in latently infected cells, indicating that ETS1 can play both a positive and negative role in HIV expression. CRISPR/Cas9 knockout of ETS1 in CD4 T cells from ART-suppressed people with HIV (PWH) confirmed that ETS1 maintains transcriptional repression of the clinical HIV reservoir. Transcriptomic profiling of ETS1-depleted cells from PWH identified a set of host cell pathways involved in viral transcription that are controlled by ETS1 in resting CD4 T cells. In particular, we observed that ETS1 knockout increased expression of the long non-coding RNA MALAT1 that has been previously identified as a positive regulator of HIV expression. Furthermore, the impact of ETS1 depletion on HIV expression in latently infected cells was partially dependent on MALAT1. Overall, these data demonstrate that ETS1 is an important regulator of HIV latency and influences expression of several cellular genes, including MALAT1, that could have a direct or indirect impact on HIV expression.Author SummaryHIV latency is a major obstacle for the eradication of HIV. However, molecular mechanisms that restrict proviral expression during therapy are not well understood. Identification of host cell factors that silence HIV would create opportunities for targeting these factors to reverse latency and eliminate infected cells. Our study aimed to explore mechanisms of latency in infected cells by employing a lentiviral CRISPR screen and CRISPR/Cas9 knockout in primary CD4 T cells. These experiments revealed that ETS1 is essential for maintaining HIV latency in primary CD4 T cells and we further confirmed ETS1’s role in maintaining HIV latency through CRISPR/Cas9 knockout in CD4 T cells from antiretroviral therapy (ART)-suppressed individuals with HIV. Transcriptomic profiling of ETS1-depleted cells from these individuals identified several host cell pathways involved in viral transcription regulated by ETS1, including the long non-coding RNA MALAT1. Overall, our study demonstrates that ETS1 is a critical regulator of HIV latency, affecting the expression of several cellular genes that directly or indirectly influence HIV expression.