Coconut holds significant importance as a fruit and oilseed crop in tropical and subtropical regions. However, low-temperature (LT) stress has caused substantial reductions in yield and economics and impedes coconut production, therefore constraining its widespread cultivation and utilization. The appropriate application of potassium (K) has the potential to enhance the cold tolerance of crops and mitigate cold damage, but the regulatory mechanisms by which K improves coconut adaptability to cold stress remain poorly understood. Transcriptome and metabolomic analyses were performed on coconut seedlings treated with LT (5 °C) and room temperature (25 °C) under various K conditions: K0 (0.1 mM KCL), KL (2 mM KCL), KM (4 mM KCL), and KH (8 mM KCL). Correlation analysis with physiological indicators was also conducted. The findings indicated that K absorption, nutrient or osmotic regulation, accumulation of substances, photosynthesis, hormone metabolism, and reactive oxygen species (ROS) clearance pathways played crucial roles in the adaptation of coconut seedlings to LT stress. LT stress disrupted the homeostasis of hormones, antioxidant enzyme activity, chlorophyll, K, and the regulation of nutrients and osmolytes. This stress also leads to the downregulation of genes and metabolites related to K transporters, hormone metabolism, transcription factors, and the metabolism of nutrients and osmolytes. Applying K helped maintain the homeostasis of hormones, antioxidant enzyme activity, chlorophyll, K, and the regulation of nutrients and osmolytes, promoted the removal of ROS, and reduced malondialdehyde, consequently diminishing the damage caused by LT stress to coconut seedlings. Furthermore, the comprehensive analysis of metabolomics and transcriptomics highlighted the importance of carbohydrate metabolism, biosynthesis of other secondary metabolites, amino acid metabolism, lipid metabolism, and ABC transporters in K’s role in improving coconut seedlings’ tolerance to LT stress. This study identified the pivotal biological pathways, regulatory genes, and metabolites implicated in K regulation of coconut seedlings to acclimate to LT stress.