There is intense debate as to whether glyphosate can interfere with aromatic amino acid biosynthesis in microorganisms inhabiting the gastrointestinal tract, which could potentially lead to negative health outcomes. We have addressed this major gap in glyphosate toxicology by using a multi-omics strategy combining shotgun metagenomics and metabolomics. We tested whether glyphosate (0.5, 50, 175 mg/kg bw/day), or its representative EU commercial herbicide formulation MON 52276 at the same glyphosate equivalent doses, has an effect on the rat gut microbiome in a 90day subchronic toxicity test. Clinical biochemistry measurements in blood and histopathological evaluations showed that MON 52276 but not glyphosate was associated with statistically significant increase in hepatic steatosis and necrosis.Similar lesions were also present in the liver of glyphosate-treated groups but not in the control group. Caecum metabolomics revealed that glyphosate inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase in the shikimate pathway as evidenced by an accumulation of shikimic acid and 3-dehydroshikimic acid. Levels of caecal microbiome dipeptides involved in the regulation of redox balance (γglutamylglutamine, cysteinylglycine, valylglycine) had their levels significantly increased. Shotgun metagenomics showed that glyphosate affected caecum microbial community structure and increased levels of Eggerthella spp. and Homeothermacea spp.. MON 52276, but not glyphosate, increased the relative abundance of Shinella zoogleoides. Since Shinella spp. are known to degrade alkaloids, its increased abundance may explain the decrease in solanidine levels measured with MON 52776 but not glyphosate. Other glyphosate formulations may have different effects since Roundup® GT Plus inhibited bacterial growth in vitro at concentrations at which MON 52276 did not present any visible effect. Our study highlights the power of a multiomics approach to investigate effects of pesticides on the gut microbiome. This revealed the first biomarker of glyphosate effects on rat gut microbiome. Although more studies will be needed to ascertain if there are health implications arising from glyphosate inhibition of the shikimate pathway in the gut microbiome, our findings can be used in environmental epidemiological studies to understand if glyphosate can have biological effects in human populations.
Graphical Abstract