The lightweight design of trucks is of great importance to enhance the load capacity and reduce the production cost. As a result, the taper-leaf spring will gradually replace the multi-leaf spring to become the main elastic element of the suspension for trucks. To reveal the changes of the handling stability after the replacement, the simulations and comparison of the taper-leaf and the multi-leaf spring suspensions with the same vertical stiffness for trucks were conducted. Firstly, to ensure the same comfort of the truck before and after the replacement, an analytical method of replacing the multi-leaf spring with the taper-leaf spring was proposed. Secondly, the effectiveness of the method was verified by the stiffness tests based on a case study. Thirdly, the dynamic models of the taper-leaf spring and the multi-leaf spring with the same vertical stiffness are established and validated, respectively. Based on this, the dynamic models of the truck before and after the replacement were established and verified by the steady static circular test, respectively. Lastly, the handling stability indexes for the truck were compared by the simulations of the drift test, the ramp steer test, and the step steer test. The results show that the yaw rate of the truck almost does not change, the steering wheel moment decreases, the vehicle roll angle obviously increases, and the vehicle side slip angle slightly increases after the replacement. Thus, the truck with the taper-leaf spring suspension has better steering portability, however, its handling stability performs worse. requirements for the handling stability of trucks [11][12][13]. However, the changes of the handling stability after the replacement have not been revealed.Due to the advantages of light weight and low noise, the taper-leaf spring is more and more used in trucks. At present, scholars mainly focus on its dynamic property, stress, and strain. Moreover, most of the studies of its mechanical properties mainly were conducted by using simulation software packages, such as Ansys, Nastran, Abaqus, and Adams. Duan et al. created the dynamic model of the tandem suspension equipped with the taper leaf spring for trucks based on Adams software [14]. In order to research the stress of a taper leaf spring, Moon et al. established a flexible multi-body dynamic model [15]. Wang et al. proposed a calculation method of the stiffness of the taper-leaf spring based on the combine superposition method and the finite difference method [16]. Zhou et al. analyzed the mechanical properties of the taper leaf spring considering the friction between the leaf springs on the basis of the FE (Finite Element) contact analysis [17]. To improve the kinematics characteristics of a midsize truck, Kim et al. selected the optimal combination parameters based on a vehicle model with a taper leaf spring [18]. Some scholars improved the performance of leaf springs from the perspective of materials. For example, Chandra et al. researched the high-temperature quality of the accelerated spheroidi...