Integrating Climate and Satellite Data for Multi-Temporal Pre-Harvest Prediction of Head Rice Yield in Australia
Allister Clarke,
Darren Yates,
Christopher Blanchard
et al.
Abstract:Precise and prompt predictions of crop yields are crucial for optimising farm management, post-harvest operations, and marketing strategies within the agricultural sector. While various machine learning approaches have been employed to forecast crop yield, their application to grain quality, particularly head rice yield (HRY), is less explored. This research collated crop-level HRY data across four seasons (2017/18–2020/21) from Australia’s rice-growing region. Models were developed using the XGBoost algorithm… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.