Abstract. We present an application of automatic theorem proving (ATP) in the verification of constructions made with dynamic geometry software (DGS). Given a specification language for geometric constructions, we can use its processor to deal with syntactic errors. The processor can also detect semantic errors -situations when, for a given concrete set of geometrical objects, a construction is not possible. However, dynamic geometry tools do not test if, for a given set of geometrical objects, a construction is geometrically sound, i.e., if it is possible in a general case. Using ATP, we can do this last step by verifying the geometric constructions deductively. We have developed a system for the automatic verification of regular constructions (made within DGSs GCLC and Eukleides), using our ATP system, GCLCprover. This gives a real-world application of ATP in dynamic geometry tools.