This paper describes a micro-electro-discharge machining (micro-EDM) technique that uses electrode arrays to achieve high parallelism and throughput in the machining. It explores constraints in the fabrication and usage of high aspect ratio LIGA-fabricated electrode arrays, as well as the limits imposed by the pulse discharge circuits on machining rates. An array of 400 Cu electrodes with 20 m diameter was used to machine perforations in 50-m-thick stainless steel. To increase the spatial and temporal multiplicity of discharge pulses, arrays of electrodes with lithographically fabricated interconnect and block-wise independent pulse control resistance-capacitance (RC) circuits are used, resulting in 100 improvement in throughput compared to single electrodes. However, it was found to compromise surface smoothness. A modified pulse generation scheme that exploits the parasitic capacitance of the interconnect offers similarly high machining rates and is more amenable to integration. Stainless steel workpieces of 100 m thickness were machined by 100 m 100 m square cross-section electrodes using in 85 s using an 80-V power supply. Surface smoothness was unaffected by electrode multiplicity. Using electrode arrays with four circuits, batch production of 36 WC-Co gears with 300 m outside diameter and 70 m thickness in 15 min is demonstrated. [692] Index Terms-Electro-discharge machining (EDM), high aspect ratio, LIGA, metal microstructures.