Model‐based systems engineering is a powerful methodology to develop safety‐critical systems. The use of the system model as a single source of truth for risk and dependability analysis results in a consistent and complete assessment. Besides, representation and logging of the assessment within the model result in a complete and up‐to‐date single source of information that can be used during the device certification as well. This paper aims to provide a comprehensive risk management SysML profile that includes interconnected safety analysis [functional hazard assessment (FHA), fault tree, and failure mode and effect analysis (FTA, FMEA)], control measure, and evaluation model elements in compliance with the medical standards. Model‐based risk assessment of a point‐of‐care diagnostic device for sepsis has been shown as a case study to show the implementation of the profile. This device is a standalone unit and the test results obtained directly affect the patient. Therefore, both the top‐down (FHA and FTA) and bottom‐up (FMEA) safety assessment methods have been used. Another objective of the study is to define a systematic and holistic method to perform fault tree analysis, not only from the system architecture models but also from the functional, activity, and sequence diagrams of the system model.