Solar energy generated by grid-connected photovoltaic (GCPV) systems is considered an important alternative electric energy source because of its clean energy production system, easy installation, and low operating and maintenance costs. This has led to it becoming more popular compared with other resources. However, finding optimal sites for the construction of solar farms is a complex task with many factors to be taken into account (environmental, social, legal and political, technical-economic, etc.), which classic site selection models do not address efficiently. There are few studies on the criteria that should be used when identifying sites for solar energy installations (large grid-connected photovoltaic systems which have more than 100 kWp of installed capacity). It is therefore essential to change the way site selection processes are approached and to seek new methodologies for location analysis. A geographic information system (GIS) is a tool which can provide an effective solution to this problem. Here, we combine legal, political, and environmental criteria, which include solar radiation intensity, local physical terrain, environment, and climate, as well as location criteria such as the distance from roads and the nearest power substations. Additionally, we use GIS data (time series of solar radiation, digital elevation models (DEM), land cover, and temperature) as further input parameters. Each individual site is assessed using a unique and cohesive approach to select the most appropriate locations for solar farm development in the Valencian Community, a Spanish region in the east of Spain.