Microbial fuel cells (MFC) are emerging technologies that can produce electricity while treating wastewater. A series of tests were carried out to evaluate the efficiency of this technology for treating dairy wastewater (DWW). The experiments used Shewanella baltica as an exoelectrogen in a small single MFC to treat simulated DWW. The impacts of various operational factors, specifically pH, hydraulic retention time (HRT), and chemical oxygen demand (COD) in the influent to the anode chamber, were investigated, and the effect of these variables on the output performance of the cell was evaluated. The best performance of the MFC was found when the pH, HRT, and COD were 8, 6.66 h, and 20,632 mg/L, respectively, in the scaled experimental setup. Under these conditions, the maximum power density and percentage removal of COD in terms of wastewater treatment ability were found to be 138 mW/m2 and 71%, respectively. It may be concluded that MFCs are suitable treatment technologies for treating dairy wastewater while potentially simultaneously generating power.