Integrating image and gene-data with a semi-supervised attention model for prediction of KRAS gene mutation status in non-small cell lung cancer
Yuting Xue,
Dongxu Zhang,
Liye Jia
et al.
Abstract:KRAS is a pathogenic gene frequently implicated in non-small cell lung cancer (NSCLC). However, biopsy as a diagnostic method has practical limitations. Therefore, it is important to accurately determine the mutation status of the KRAS gene non-invasively by combining NSCLC CT images and genetic data for early diagnosis and subsequent targeted therapy of patients. This paper proposes a Semi-supervised Multimodal Multiscale Attention Model (S2MMAM). S2MMAM comprises a Supervised Multilevel Fusion Segmentation N… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.