2020
DOI: 10.1016/j.carbon.2020.06.017
|View full text |Cite
|
Sign up to set email alerts
|

Integrating metallic cobalt and N/B heteroatoms into porous carbon nanosheets as efficient sulfur immobilizer for lithium-sulfur batteries

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

2
21
0
1

Year Published

2021
2021
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 54 publications
(24 citation statements)
references
References 56 publications
2
21
0
1
Order By: Relevance
“…15-0806) of ( 111), (200), and (220) crystal faces at the 2 theta positions of 44.2°, 51.5°, and 75.9°, respectively. 15,38,44 Under an air atmosphere, the TGA-DSC profiles of Co/NrGO showed two exothermic peaks at 461°C and 498°C, and the corresponding weight losses can be assigned to the calcination of the N-doped rGObased carbonaceous framework and the hightemperature oxidation of nanocrystalline Co, respectively (Figure 3B). If the air-atmosphere transformation of elemental Co into Co 3 O 4 is complete (Figure S4), herein, the Co content in as-obtained Co/NrGO can be calculated to be ~15.8 wt% according to TGA-DSC results.…”
Section: Electrochemical Kinetics Measurementmentioning
confidence: 99%
See 2 more Smart Citations
“…15-0806) of ( 111), (200), and (220) crystal faces at the 2 theta positions of 44.2°, 51.5°, and 75.9°, respectively. 15,38,44 Under an air atmosphere, the TGA-DSC profiles of Co/NrGO showed two exothermic peaks at 461°C and 498°C, and the corresponding weight losses can be assigned to the calcination of the N-doped rGObased carbonaceous framework and the hightemperature oxidation of nanocrystalline Co, respectively (Figure 3B). If the air-atmosphere transformation of elemental Co into Co 3 O 4 is complete (Figure S4), herein, the Co content in as-obtained Co/NrGO can be calculated to be ~15.8 wt% according to TGA-DSC results.…”
Section: Electrochemical Kinetics Measurementmentioning
confidence: 99%
“…According to recent advances in the research on highperformance Li-S batteries, 3,5,22,[24][25][26][27][28][29][30][34][35][36][37][38][39]53,54 porous carbon generally serves as a sulfur host and a second collector in the cathode configuration and as a separator coating to block polysulfide migration, and then due to , the 3rd charge-discharge cycling curves in Figure 4B show a discharge/charge capacity of 1505.8/1482.2 and 1144.8/1101.9 mAh g −1 for Co/NrGO/S and NrGO/S, respectively, comparatively indicating higher sulfur utilization of the former than that of the latter. Aside from this, the relatively long-and-flat discharging/charging plateau of Co/NrGO/S with a smaller value of plateau voltage difference (e.g., Co/NrGO/ S ~0.15 V, NrGO/S ~0.23 V) confirms the relatively high electrode polarization of NrGO/S, as shown in Figure 4A.…”
Section: Enhanced Electrochemical Properties Of Co/nrgo/smentioning
confidence: 99%
See 1 more Smart Citation
“…的设计中也扮演了重要的角色。Han 等 [40] 将轻质的 硼掺杂石墨烯涂覆在传统隔膜上构建了功能修饰层, 利用其对多硫化物的吸附和再利用,有效缓解了穿 梭效应并提高活性物质利用率。 鉴于不同掺杂元素的基本性质,及其在碳晶格 结构中不同的作用方式,多元素共掺杂是调控碳材 料表面化学,改善硫电化学反应的重要策略之一 [41][42][43] 。对此,Kuang 课题组 [44] 通过水热法首次合成了 氮、硼共掺杂的石墨烯纳米带(NBCGNs [45] 以硼酸为掺杂剂制备了硼、 氧共掺杂的多壁 碳纳米管宿主材料,所得电池循环 100 圈后比容量 仍保持 937 mAh•g -1 ,显著优于基于普通碳管的电池 性能(428 mAh•g -1 )。 此外,研究人员亦尝试了其他 共掺杂形式,包括硼硅共掺杂石墨烯 [46] 、钴金属和 硼氮共掺杂石墨烯 [47] [38] ;(c) NBCGN/S 充放电过程示意图,不 同元素掺杂碳管/硫的复合电极(d)在 0.2C 下的循环性能以及(e)倍率性能 [44] Fig. 3 [48][49][50][51][52][53][54][55][56] ,可为电化学反应提供快速的电子供应 [57] ; 同时,金属与硼之间存在局域有限的离子键极性结 构, 可为多硫化物提供良好的吸附位点 [58][59] ; 此外, 高负电性的硼和过渡金属合金化后稳定性减弱,更 容易参与氧化还原反应,这使得金属硼化物有可能 通过表面反应作为媒介,参与锂硫电化学反应 [60] 。 图 4 几类金属化合物导电性的对比 [48][49][50][51][52][53][54][55][56] Fig.…”
Section: 硼原子掺杂碳unclassified
“…prepared N, S, and O tri‐doped porous carbon composites from biomass by chemical activation and verified that the atoms of S, O, N would form strong chemical bonds in the host material due to strong electronegativity, thus enhancing the chemisorption of polysulfides (Figure 7d). Zhang et al [92] . obtained prolonged cycling stability and low‐capacity decay rate under 5 C by using porous carbon nanosheets modified with cobalt metal and non‐metallic nitrogen/boron heteroatoms (Co‐NBC) as the main material for fixing sulfur.…”
Section: Doping Strategiesmentioning
confidence: 99%