High-throughput technologies, such as chromatin immunoprecipitation (ChIP) with massively parallel sequencing (ChIP-seq) have enabled cost and time efficient generation of immense amount of genome data. The advent of advanced sequencing techniques allowed biologists and bioinformaticians to investigate biological aspects of cell function and understand or reveal unexplored disease etiologies. Systems biology attempts to formulate the molecular mechanisms in mathematical models and one of the most important areas is the gene regulatory networks (GRNs), a collection of DNA segments that somehow interact with each other. GRNs incorporate valuable information about molecular targets that can be corellated to specific phenotype.In our study we highlight the need to develop new explorative tools and approaches for the integration of different types of -omics data such as ChIP-seq and GRNs using pathway analysis methodologies. We present an integrative approach for ChIP-seq and gene expression data on GRNs. Using public microarray expression samples for lung cancer and healthy subjects along with the KEGG human gene regulatory networks, we identified ways to disrupt functional sub-pathways on lung cancer with the aid of CTCF ChIPseq data, as a proof of concept.We expect that such a systems biology pipeline could assist researchers to identify corellations and causality of transcription factors over functional or disrupted biological subpathways.