2024
DOI: 10.1101/2024.12.07.627346
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Integrating natural language processing and genome analysis enables accurate bacterial phenotype prediction

Daniel Gómez-Pérez,
Alexander Keller

Abstract: Understanding microbial phenotypes from genomic data is crucial in areas of research including co-evolution, ecology and pathology. This study proposes a new approach to integrate literature-derived information with genomic data to study microbial traits, combining natural language processing (NLP) with functional genome analysis. We applied this methodology to publicly available data to overcome current limitations and provide novel insights into microbial phenotype prediction. We fine-tuned specialized trans… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 85 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?