2024
DOI: 10.1142/s0219720024500033
|View full text |Cite
|
Sign up to set email alerts
|

Integrating pharmacophore model and deep learning for activity prediction of molecules with BRCA1 gene

Seloua Hadiby,
Yamina Mohamed Ben Ali

Abstract: In this paper, we propose a novel approach for predicting the activity/inactivity of molecules with the BRCA1 gene by combining pharmacophore modeling and deep learning techniques. Initially, we generated 3D pharmacophore fingerprints using a pharmacophore model, which captures the essential features and spatial arrangements critical for biological activity. These fingerprints served as informative representations of the molecular structures. Next, we employed deep learning algorithms to train a predictive mod… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 34 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?