Integrating pharmacophore model and deep learning for activity prediction of molecules with BRCA1 gene
Seloua Hadiby,
Yamina Mohamed Ben Ali
Abstract:In this paper, we propose a novel approach for predicting the activity/inactivity of molecules with the BRCA1 gene by combining pharmacophore modeling and deep learning techniques. Initially, we generated 3D pharmacophore fingerprints using a pharmacophore model, which captures the essential features and spatial arrangements critical for biological activity. These fingerprints served as informative representations of the molecular structures. Next, we employed deep learning algorithms to train a predictive mod… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.