Abstract-Online services are becoming increasingly datacentric; they collect, process, analyze and anonymously disclose growing amounts of personal data. It is crucial that such systems are engineered in a privacy-aware manner in order to satisfy both the the privacy requirements of the user, and the legal privacy regulations that the system operates under. How can system developers be better supported to create privacy-aware systems and help them to understand and identify privacy risks? Model-Driven Engineering (MDE) offers a principled approach to engineer systems software. The capture of shared domain knowledge in models and corresponding tool support can increase the developers' understanding. In this paper, we argue for the application of MDE approaches to engineer privacyaware systems. We present a general purpose privacy model and methodology that can be used to analyse and identify privacy risks in systems that comprise both access control and data pseudonymization enforcement technologies. We evaluate this method using a case-study based approach and show how the model can be applied to engineer privacy-aware systems and privacy policies that reduce the risk of unintended disclosure.