Modeling studies predict that droughts and hotter water and air temperatures caused by climate warming will reduce the efficiency (η) of thermoelectric plants by 0.12-0.45% for each 1 °C of warming. We evaluate these predictions using historical performance data for 39 open- and closed-loop coal and natural gas plants from across the U.S., which operated under daily and seasonal temperature fluctuations multiples greater than future average warming projections. Seven to 14 years of hourly water (Tw), dry-bulb air (Ta), and wet-bulb air (Twb) temperature recordings collected near each plant are regressed against efficiency to attain estimates of Δη per 1 °C increase. We find reductions in η with increased Tw (for open-loop plants) up to 1 order of magnitude less than previous estimates. We also find that changes in η associated with changes in Ta (open-loop plants) or Twb (closed-loop plants) are not only smaller than previous estimates but also variable; i.e., η rises with Ta or Twb for some plants and falls for others. Our findings suggest that thermoelectric plants, particularly closed-loop plants, should be more resilient to climate warming than previously expected.