Integrating sensor data and machine learning to advance the science and management of river carbon emissions
Lee Brown
Abstract:Greenhouse gas (GHG) emission estimates originating from river networks remain highly uncertain in many parts of the world, leading to gaps in global inventories and preventing effective management. In-situ sensor technology advances, coupled with mobile sensors on robotic sensor-deployment platforms, will allow more effective data acquisition to monitor carbon cycle processes influencing river CO 2 and CH 4 emissions; however, if countries are to respond effectively to global climate change threats, data sens… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.