In this survey we report about recent work on weighted Banach spaces of analytic functions on the unit disc and on the whole complex plane defined with sup-norms and operators between them. Results about the solid hull and core of these spaces and distance formulas are reviewed. Differentiation and integration operators, Cesàro and Volterra operators, weighted composition and superposition operators and Toeplitz operators on these spaces are analyzed. Boundedness, compactness, the spectrum, hypercyclicity and (uniform) mean ergodicity of these operators are considered.