Objectives: The objective of this study was to enhance our understanding of the population history in South America, specifically Northwestern Argentina, by analyzing complete ancient mitogenomes of individuals from the Ojo de Agua archeological site (970 BP) in Quebrada del Toro (Salta, Argentina).
Materials and Methods:We analyzed teeth from four individuals from the site Ojo de Agua (970 ± 60 BP), located in Quebrada del Toro (Andean region of Northwestern Argentina). DNA extracts were converted to double-stranded DNA libraries and indexed using unique dual-indexing primer combinations. DNA libraries were then enriched for the complete mitochondrial genome, pooled at equimolar concentrations, and sequenced on an Illumina ® MiSeq™ platform. Reads from high quality libraries were trimmed, merged, and then mapped to the revised Cambridge Reference Sequence. The aDNA damage patterns were assessed and contamination estimated. Finally, variants were called, filtered, and the consensus mitogenome was constructed and used for haplogroup assignment. We also compiled available mitogenome sequences from ancient and present-day populations from the Southcentral Andes and other surrounding regions in Argentina. Maximum Likelihood and Bayesian phylogenetic reconstructions were obtained using the generated dataset.Results: We successfully obtained the complete mitogenome sequence from one individual with an average depth coverage of 102X. We discovered a novel haplotype that was assigned to haplogroup D1. Phylogenetic reconstructions suggests that this haplotype falls within the sister branches of the D1j lineage, forming a wellsupported clade. The estimate TMRCA of this clade that includes D1j and its sister branches ranged between 12,535 and 18,669 ya.
Discussion:The sequence analyzed in this study represents the first ancient mitogenome from within the valley region in Northwestern Argentina. We found that a representative of a lineage highly associated with D1j was already present approximately 1000 BP in the region. Our results agree with the proposed origin of D1j in other regions north of Patagonia and independent of the Pacific coast fast migratory route,