A unique roving robot navigational system is presented here, which is inspired by rats’ navigational and spatial awareness brain cells. Rodents, as well as all mammalians, are capable of exploring their surroundings when foraging or avoiding predators, and remembering their way home or to the closest known shelter through path integration. This is true for other creatures, but the neural cells involved in accomplishing these tasks have been most notably studied in rats, as they share certain similarities with a human’s brain. The robot built in this study, named ratbot, uses characteristics and interpreted functionalities of the specialized navigational and spatial cognition brain cells, which are primarily found in the hippocampus and entorhinal cortex. These cells are the: place cells, head direction cells, boundary cells, and grid cells, as well as memory used for the storage and access of salient distal cues. Similar to a rat, the ratbot uses path integration to navigate from one waypoint to another. This is accomplished through use of vectors and vector mathematics. Additionally, the ratbot uses a field programmable gate array (FPGA) to emulate grid cell inspired functionality for environment mapping and spatial cognition.