This paper proposes a frequency–wavenumber (f–k) analysis technique through deep learning-based super resolution (SR) ground penetrating radar (GPR) image enhancement. GPR is one of the most popular underground investigation tools owing to its nondestructive and high-speed survey capabilities. However, arbitrary underground medium inhomogeneity and undesired measurement noises often disturb GPR data interpretation. Although the f–k analysis can be a promising technique for GPR data interpretation, the lack of GPR image resolution caused by the fast or coarse spatial scanning mechanism in reality often leads to analysis distortion. To address the technical issue, we propose the f–k analysis technique by a deep learning network in this study. The proposed f–k analysis technique incorporated with the SR GPR images generated by a deep learning network makes it possible to significantly reduce the arbitrary underground medium inhomogeneity and undesired measurement noises. Moreover, the GPR-induced electromagnetic wavefields can be decomposed for directivity analysis of wave propagation that is reflected from a certain underground object. The effectiveness of the proposed technique is numerically validated through 3D GPR simulation and experimentally demonstrated using in-situ 3D GPR data collected from urban roads in Seoul, Korea.