2024
DOI: 10.1002/tox.24157
|View full text |Cite
|
Sign up to set email alerts
|

Integration of machine learning for developing a prognostic signature related to programmed cell death in colorectal cancer

Qi‐Tong Xu,
Jian‐Kun Qiang,
Zhi‐Ye Huang
et al.

Abstract: BackgroundColorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD‐rela… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

1
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 46 publications
1
0
0
Order By: Relevance
“…The use of multiple integrated machine learning algorithms resulted in improved accuracy of prognostic predictions for osteosarcoma, as evidenced by higher concordance index scores compared to traditional methods. The experimental results are consistent with findings from other studies, which have used similar methodologies and analytical frameworks ( 47 50 ). OS samples from all datasets are classified by the OS-PCDS into high-risk and low-risk groups, with survival analysis indicating that a lower prognosis is associated with the low-risk group and a higher prognosis is associated with the high-risk group.…”
Section: Discussionsupporting
confidence: 91%
“…The use of multiple integrated machine learning algorithms resulted in improved accuracy of prognostic predictions for osteosarcoma, as evidenced by higher concordance index scores compared to traditional methods. The experimental results are consistent with findings from other studies, which have used similar methodologies and analytical frameworks ( 47 50 ). OS samples from all datasets are classified by the OS-PCDS into high-risk and low-risk groups, with survival analysis indicating that a lower prognosis is associated with the low-risk group and a higher prognosis is associated with the high-risk group.…”
Section: Discussionsupporting
confidence: 91%