People wear clothes for warmth, survival and necessity in modern life, but in the modern era, eco-friendliness, shortened production times, design and intelligence also matter. To determine the relationship between data series and verify the proximity of each data series, a gray relational analysis, or GRA, is applied to textiles, where seamless bonding technology enhances the bond between components. In this study, a polyurethane prepolymer, 2-hydroxyethyl acrylate (2-HEA) as an end-capping agent and n-octyl acrylate (ODA) as a photoinitiator were used to synthesize a dual-curing polyurethane hot-melt adhesive. Taguchi quality engineering and a gray relational analysis were used to discuss the influence of different mole ratios of NCO:OH and the effect of the molar ratio of the addition of octyl decyl acrylate on the mechanical strength. The Fourier transform infrared spectroscopy (FTIR) results showed the termination of the prepolymer’s polymerization reaction and the C=O peak intensity at 1730 cm−1, indicating efficient bonding to the main chain. Advanced Polymer Chromatography (APC) was used to investigate the high-molecular-weight (20,000–30,000) polyurethane polymer bonded with octyl decyl acrylate to achieve a photothermosetting effect. The thermogravimetric analysis (TGA) results showed that the thermal decomposition temperature of the polyurethane hot-melt adhesive also increased, and they showed the highest pyrolysis temperature (349.89 °C) for the polyhydric alcohols. Furthermore, high peel strength (1.68 kg/cm) and shear strength (34.94 kg/cm2) values were detected with the dual-cure photothermosetting polyurethane hot-melt adhesive. The signal-to-noise ratio was also used to generate the gray relational degree. It was observed that the best parameter ratio of NCO:OH was 4:1 with five moles of monomer. The Taguchi quality engineering method was used to find the parameters of single-quality optimization, and then the gray relation calculation was used to obtain the parameter combination of multi-quality optimization for thermosetting the polyurethane hot-melt adhesive. The study aims to meet the requirements of seamless bonding in textile factories and optimize experimental parameter design by setting target values that can effectively increase production speed and reduce processing time and costs as well.