The response of existing transient triple-porosity models for fractured horizontal wells do not converge to that of linear dual-porosity model (DPM) in the absence of natural/microfractures (MFs). The main reason is the assumption of sequential-depletion from matrix to MF, and from MF to hydraulic-fractures (HFs). This can result in unreasonable estimates of MF and/or HF parameters. Hence, the authors proposed a quadrilinear flow model (QFM) in a previous paper which relaxes this sequential-depletion assumption to allow simultaneous matrix–MF and matrix–HF depletion. Also, it is proved that QFM simplifies to both DPM and linear sequential triple-porosity model (STPM). This work considers the implications of applying QFM, STPM, and DPM type-curves and analysis equations on production data of two fractured horizontal wells completed in the Bakken and Cardium Formations. A comparative study of the reservoir parameters estimated from the application of these models to the same production data reveals two key results. First, the application of DPM on the production data from reservoirs with active MF could result in overestimation of HF half-length. This happens to compensate for the extra fluid depletion pathways provided by MF. Second, the application of STPM on the production data from the reservoirs with active matrix–HF communication could result in overestimation of the MF intensity. Results from this study are significant when selecting the appropriate model for interpreting production data from fractured horizontal wells completed in formations with or without active MF. The DPM is appropriate if analog studies (e.g., outcrop, microseismic and image log analyses) reveal high fracture spacing aspect ratio (negligible MF) in the reservoir. Fracture spacing aspect ratio is MF spacing divided by the HF spacing. The STPM is appropriate if analog studies reveal low spacing aspect ratio (e.g., matrix–HF face damage or high MF intensity within a given HF spacing). QFM is appropriate for all fracture spacing aspect ratios.