Several atypical antipsychotics exert mood-stabilising effects via the modulation of various monoamine receptors and intracellular signallings. Recent pharmacodynamic studies suggested that tripartite synaptic transmission can contribute to the pathophysiology of schizophrenia and mood disorders, their associated cognitive impairment, and several adverse reactions to atypical antipsychotics. Therefore, to explore the mechanisms underlying the antidepressive mood-stabilising and antipsychotic effects of brexpiprazole (Brex), we determined the effects of subchronic administration of therapeutically relevant concentrations/doses of Brex on the protein expression of 5-HT receptors, connexin43, cAMP levels, and intracellular signalling in cultured astrocytes and rat hypothalamus using ultra-high-pressure liquid chromatography with mass spectrometry and capillary immunoblotting systems. Subchronic administration of a therapeutically relevant concentration of Brex (300 nM) downregulated both 5-HT1A (5-HT1AR) and 5-HT7 (5-HT7R) receptors, in addition to phosphorylated Erk (pErk), without affecting phosphorylated Akt in the astroglial plasma membrane. Subchronic administration of 300 nM Brex decreased and increased phosphorylated AMPK and connexin43, respectively, in the astroglial cytosol fraction. A therapeutically relevant concentration of Brex acutely decreased the astroglial cAMP level, whereas, under the inhibition of 5-HT1AR, Brex did not affect astroglial cAMP levels. However, the 5-HT7R-agonist-induced increased astroglial cAMP level was inhibited by Brex. In contrast to the in vitro study, systemic subchronic administration of effective doses of Brex (3 and 10 mg/kg/day for 14 days) increased the cAMP level but did not affect phosphorylated AMPK in the rat hypothalamus. These results suggest several complicated pharmacological features of Brex. Partial 5-HT1AR agonistic action predominates in the low range of therapeutically relevant concentrations of Brex, whereas in the high range, 5-HT7R inverse agonist-like action is overlapped on the 5-HT1A agonistic action. These unique suppressive effects of Brex on 5-HT7R play important roles in the clinical features of Brex regarding its antidepressive mood-stabilising actions.