This paper focuses on the application of the hardware-in-the-loop (HIL) technique in the winemaking process. The HIL technique provides an effective methodology to test and verify the automatic control of industrial processes in 3D laboratory environments. Two parts are considered: (i) software, which consists of the virtualization of the wine process in order to generate a realistic work environment that allows the student to manipulate the system while visualizing the changes in the process; and (ii) hardware, through which the process control is implemented in ladder language in a PLC S7 1200 AC/DC/RLY (programmable logic controller). Bidirectional Ethernet TCP/IP communication is established, achieving a client–server architecture. This article highlights the main advantages of the HIL technique, such as its ability to simulate complex and extreme scenarios that would be difficult or expensive to recreate in a real environment. In addition, real-time testing of the hardware and software to implement the control system is performed, allowing for fast and accurate responses. Finally, a usability table is obtained that demonstrates the benefits of performing industrial process control work in virtual work environments, focusing the development on meaningful learning processes for engineering students.