Abstract. During and shortly after a disaster, data about the hazard and its consequences are scarce and not readily available. Information provided by eyewitnesses via social media is a valuable information source, which should be explored in a more effective way. This research proposes a methodology that leverages social media content to support rapid inundation mapping, including inundation extent and water depth in the case of floods. The novelty of this approach is the utilization of quantitative data that are derived from photos from eyewitnesses extracted from social media posts and their integration with established data. Due to the rapid availability of these posts compared to traditional data sources such as remote sensing data, areas affected by a flood, for example, can be determined quickly. The challenge is to filter the large number of posts to a manageable amount of potentially useful inundation-related information, as well as to interpret and integrate the posts into mapping procedures in a timely manner. To support rapid inundation mapping we propose a methodology and develop "PostDistiller", a tool to filter geolocated posts from social media services which include links to photos. This spatial distributed contextualized in situ information is further explored manually. In an application case study during the June 2013 flood in central Europe we evaluate the utilization of this approach to infer spatial flood patterns and inundation depths in the city of Dresden.