2014
DOI: 10.15282/jmes.7.2014.23.0121
|View full text |Cite
|
Sign up to set email alerts
|

Integration of Seasonal Autoregressive Integrated Moving Average and Bayesian Methods to Predict Production Throughput under Random Variables

Abstract: Analysing and modelling efforts on production throughput are getting more complex due to random variables in today's dynamic production systems. The objective of this study is to take multiple random variables of production into account when aiming for production throughput with higher accuracy of prediction. In the dynamic manufacturing environment, production lines have to cope with changes in set-up time, machinery breakdown, lead time of manufacturing, demand, and scrap. This study applied a Bayesian metho… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 17 publications
0
0
0
Order By: Relevance