Asthma is a serious immune-mediated respiratory airway disease. Its pathological processes involve genetics and the environment, but it remains unclear. To understand the risk factors of asthma, we combined genome-wide association study (GWAS) risk loci and clinical data in predicting asthma using machine-learning approaches. A case-control study with 123 asthma patients and 100 healthy controls was conducted in Zhuang population in Guangxi. GWAS risk loci were detected using polymerase chain reaction, and clinical data were collected. Machine-learning approaches (e.g., extreme gradient boosting [XGBoost], decision tree, support vector machine, and random forest algorithms) were used to identify the major factors that contributed to asthma. A total of 14 GWAS risk loci with clinical data were analyzed on the basis of 10 times of 10-fold cross-validation for all machine-learning models. Using GWAS risk loci or clinical data, the best performances were area under the curve (AUC) values of 64.3% and 71.4%, respectively. Combining GWAS risk loci and clinical data, the XGBoost established the best model with an AUC of 79.7%, indicating that the combination of genetics and clinical data can enable improved performance. We then sorted the importance of features and found that the top six risk factors for predicting asthma were rs3117098, rs7775228, family history, rs2305480, rs4833095, and body mass index. Asthma-prediction models based on GWAS risk loci and clinical data can accurately predict asthma and thus provide insights into the disease pathogenesis of asthma. Further research is required to evaluate more genetic markers and clinical data and predict asthma risk.